home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Visual Basic Source Code
/
Visual Basic Source Code.iso
/
vbsource
/
ainet
/
t1static.c
< prev
next >
Wrap
C/C++ Source or Header
|
1996-10-15
|
6KB
|
182 lines
/* ----------------------------------------------------------------------- *
* *
* (C) Copyright 1996 by: aiNet *
* Trubarjeva 42, SI-3000 Celje *
* Europe, Slovenia *
* All Rights Reserved *
* *
* Subject: C code for single vector prediction. *
* File: T1Static - The XOR problem created by XOR.CSV file *
* *
* ----------------------------------------------------------------------- */
/*--------------------------------------------------------------------------
Here it will be shown how we can colve the XOR problem using
aiNet C functions
The XOR problem:
================
Number of model vectors: 4
Number of variables: 3
Number of input variables: 3
Any discrete variables: NONE
Model vectors: Inp,Inp,Out
row 1: 1, 1, 0
row 2: 1, 0, 1
row 3: 0, 1, 1
row 4: 0, 0, 0
Test vectors (vectors which will be used in prediction) together with
penalty coefficient and penalty method.
Prediction vectors: Inp Inp Out
prd 1: 0.9 0.1 ??
prd 2: 0.1 0.9 ??
prd 3: 0.2 0.2 ??
prd 4: 0.7 0.7 ??
Penalty coeffcient: 0.3
Penalty methods: STATIC
NOTE: Selected penalty coefficients are in no case optimal.
They were selected randomly, to perform a few tests.
The test results were compared with the results calculated by
the main aiNet 1.14 application.
--------------------------------------------------------------------------
Results (rounded at fourth decimal):
--------------------------------------------------------------------------
Penalty cefficient: 0.3
Penalty method: STATIC
(RESULT)
Prediction vectors: Inp Inp ( Out )
prd 1: 0.9 0.1 (1.0000)
prd 2: 0.1 0.9 (1.0000)
prd 3: 0.2 0.2 (0.0007)
prd 4: 0.7 0.7 (0.0096)
-------------------------------------------------------------------------*/
/*
* This file assumes that ainetxx.dll will be statically binded to exe,
* which means that AI_STATIC_DLL_BINDING flag must be defined and
* ainetxx.lib must be included in the linking process.
*
* IMPORTANT NOTE for ainet32.dll:
* It has been reported that only Borland C++ V5.0 compiler
* can bind ainet32.lib correctly. If you use any other compiler, you
* should load ainet32.dll at run time; which means this example will
* not work until you modify it. See T2RunTim.C and T3RunTim.C to find out
* how run time binding is archived.
*/
#if !defined(__BORLANDC__)
#error Only Borland C++ v5.0 will compile this correctly.
#endif
#define AI_STATIC_DLL_BINDING
#include "ainetdll.h"
#include <stdio.h>
#include <stdlib.h>
void main()
{
/*
* Here we present the simplest way to create the model. It will
* be read from a CSV file which was created by aiNet application.
*/
int i;
int version;
aiModel* model = NULL;
float predict[4][3] = { { 0.9,0.1, 999 }, /* vectors to be predicted */
{ 0.1,0.9, 999 },
{ 0.2,0.2, 999 },
{ 0.7,0.7, 999 } };
/*
* Title
*/
version = aiGetVersion();
printf( "\naiNetDLL version %i.%i! (C) Copyright by aiNet, 1996",
version/100, version%100 );
printf( "\n---------------------------------------------------\n" );
/*
* Register DLL
*/
aiRegistration( "Your registration name", "Your code" );
/*
* Setup the model - read the csv file.
*/
model = aiCreateModelFromCSVFile( "xor.csv" );
if(!model) {
printf( "\nError: Something went wrong during model creation!" );
exit(EXIT_FAILURE);
}
/*
* Output the model
*/
printf( "\n Model name: aiNet DLL test 1 (XOR.CSV)" );
printf( "\nNumber of model vectors: %i", aiGetNumberOfModelVectors(model));
printf( "\n Number of variables: %i", aiGetNumberOfVariables(model));
printf( "\n Variable names: A, B, A xor B" );
printf( "\n Discrete flag: %i, %i, %i",
aiGetDiscreteFlag(model,1),
aiGetDiscreteFlag(model,2),
aiGetDiscreteFlag(model,3) );
for( i=1; i<=aiGetNumberOfModelVectors(model); i++ ) {
printf( "\n\t\t\t %3.1lf, %3.1lf, %3.1lf",
aiGetVariable(model, i,1),
aiGetVariable(model, i,2),
aiGetVariable(model, i,3) );
}
/*
* Normalize the model
*/
aiNormalize(model,NORMALIZE_REGULAR);
/*
* Prediction: Pen. coefficient = 0.30, Pen. method = STATIC
* This test has static penalty coefficient 0.30
*/
printf( "\n\n Penalty coefficient: 0.30" );
printf( "\n Penalty method: STATIC" );
printf( "\n\t A(inp), B(inp), A xor B(out)" );
for ( i=0; i<4; i++ ) {
aiPrediction( model, predict[i], 0.30, PENALTY_STATIC );
printf( "\n\t%7.4f, %7.4f, %7.4f",
predict[i][0],predict[i][1],predict[i][2] );
}
/*
* Denormalize the model (in this case it is not necessary)
*/
aiDenormalize(model);
/*
* We must call the aiDeleteModel function here since the model
* was allocated dynamicaly using the aiCreateModelFromCSVFile function.
*/
aiDeleteModel(model);
printf( "\n\nEnd." );
exit(EXIT_SUCCESS);
}
/* THE END */